
Multi-label text classification with RoBERTa
Project report

Group 3

Teemu Pöyhönen
014696400

Christoph Schäfer
015430555

Varpu Vehomäki
014810189

1 Introduction

For our final project we chose the text classifica-
tion task. The task in question was a multi-label
classification task with 126 different labels.

We implemented RoBERTa base after experi-
menting with other BERT models (DistilBERT,
BERT base.) The main issues are the large num-
ber of labels and some of these labels being very
infrequent.

2 Data

The data used for this task was from the Reuters
corpus. The original data was in xml-format, so we
created an xml scraper to retrieve the topic codes,
headlines and text.

There were 126 different labels and 296934 in-
stances. We split the data so that there were 237547
instances in the training set and 59387 instances in
the evaluation set.

Some labels were much more common than oth-
ers. The most common label was CCAT that has
the description ”corporate/industrial”. There were
also labels that did not appear in the training set at
all. In Figure 1 we can see the differences between
the numbers of labels.

3 Model

The model is based on (Mishra, 2020), which con-
sists of fine-tuning BERT base (uncased). After-
which, there is a dropout layer (0.3), followed by a
fully connected linear layer.

For the specific BERT model, we have tried
BERT-base, BERT-large, DistilBERT, RoBERTa
and XLM-RoBERTa.

3.1 Architecture
Initially, we fine-tuned and ran experiments on sim-
ply the BERT model and a linear layer on top of
it, though for learning purposes, we changed the

model from BERT model to BERTForSequence-
Classification. This required some coding and
adapting the data to the model, as well as changing
the architecture. Lastly, we switched back to man-
ually implementing the linear layer for the purpose
of implementing two linear layers,and a relu acti-
vation function. Our final resulting architecture is
the following:

l1 = transformers.RobertaModel.from_
pretrained('roberta-base',
output_hidden_states=False)

l2 = torch.nn.Sequential(
torch.nn.Dropout(0.3),
torch.nn.Linear(768, 768),
torch.nn.ReLU(),
torch.nn.Dropout(0.3),
torch.nn.Linear(768, 126)

)

Dropout rates 0.1, 0.3 and 0.5 were experimented
after the BERT and BERTForSequenceClassifica-
tion. 0.3 proved to be a well-performing rate, so
we applied it to DistilBERT and RoBERTa.

While we are aware that dropout should not be
used before the softmax layer, we still wanted to
experiment and see the effect. As expected, the
model performed slightly worse, and the model
reported 0% training accuracy for all epochs (while
validation accuracy increased in a normal way.)

3.2 Hyperparameters
After experimentation, it seems that the model
learns best with 2e-05 learning rate. Regardless
of varying the batch size, this value performed the
best. Learning rate of 1e-04 causes the model to
not learn at all (regardless of batch size) and 2e-05
is almost equal to 1e-05.

As we are trying to classify documents, we in-
creased the maximum sequence length from 200 to
512. In fact, this is BERT’s maximum as well.



Figure 1: All labels that occured in the training set and their number of occurances

The training batch size was set to 32. Increasing
this further (e.g. 64) resulted in CUDA memory
errors, since higher batch size combined with the
high value for maximum sequence length produces
very large tensors, causing memory errors.

We trained the model for 5 epochs. It seems
that on average, training accuracy surpasses the
validation accuracy after approximately 4 epochs,
regardless of different hyperparameters.

We use the AdamW optimizer with weight decay
and epsilon.

We found from BERTForSequenceClassification
model’s documentation page a method to apply
weight decay to all parameters other than bias and
layer normalization terms. For this, weight decay
0.1 was used. This improved the validation accu-
racy slightly.

With so many labels (126) we implemented ep-
silon (1e-8) to deal with any zero division errors.

To reduce the problems caused by the class im-
balance in the training set we used the function
BCEWithLogitsLoss with the pos weight pa-
rameter to give more weight to examples that have
the label 1.

4 Training process

During the training process we recorded the train-
ing and validation accuracies to keep track of the
changes over the epochs and to see if our models
are overfitting or underfitting. For all the different
models we implemented a similar progression of
accuracies could be observed. The results of the

BertModel are depicted in Figure 2, of the Distil-
bertModel in Figure 3 and of the RoBERTaModel
in Figure 4.

As can be seen in the figures, the models achieve
already good results during the first epoch of about
65-67% and increase to an accuracy of about 69-
70% by Epoch 5. Even if our models are learning
and the training accuracy increases over time it is
still not very high and overfitting can be excluded.
However, wrong predictions are still made at later
epochs. This could be due to the high number
of labels and especially the uneven distribution of
label occurances.

Figure 2: Progression of the training and validation ac-
curacy of the BertModel over time



Figure 3: Course of the training and validation accu-
racy of the DistilbertModel over time

Figure 4: Course of the training and validation accu-
racy of the RoBERTaModel over time

5 Results

After experimenting with different models, we
came to the conclusion that the RoBERTa model
achieved the best scores.

Tables 1, 2 and 3 present some of the results by
the RoBERTa model.

label precision recall f1-score support
GCAT 0.94 0.96 0.95 16416
C15 0.96 0.94 0.95 11668

CCAT 0.95 0.97 0.96 27288
MCAT 0.95 0.95 0.95 16132

Table 1: Most common labels

In tables 1 and 2 we can see that all of the most
common labels have F1-scores over 0.9 whereas
none of the least common labels gets too close
to that number. Compared to some of the worse-

label precision recall f1-score support
C313 0.61 0.55 0.58 74
C331 0.78 0.77 0.77 86
E132 0.78 0.84 0.81 74
E141 0.59 0.59 0.59 29
E142 0.71 0.42 0.53 12
E143 0.78 0.78 0.78 97
E312 0.00 0.00 0.00 1
E313 0.00 0.00 0.00 8
E61 0.43 0.76 0.55 17

G156 0.00 0.00 0.00 17
GFAS 0.47 0.54 0.51 35

GOBIT 0.76 0.71 0.73 62
GTOUR 0.90 0.65 0.75 40

Table 2: Least common labels

label precision recall f1-score support
micro avg 0.90 0.89 0.89 190321
macro avg 0.62 0.60 0.61 190321

weighted avg 0.90 0.89 0.89 190321
samples avg 0.92 0.91 0.90 190321

Table 3: Scores

performing models we experimented with, the pre-
cision of the least common labels is lower. In turn,
the F1-scores of many of the least common labels
were higher than for example with the plain BERT
model.

The macro and micro averages of the F1-score
seen in table 3 support the idea that the model
performance when classifying the most common
labels is good, but it does not handle less common
labels very well. Specifically, this is evidenced by
the fact that macro average F1-score is significantly
lower than micro.

Our biggest problem was mostly the model over-
fitting the training data. The validation accuracy
typically increased between the first epochs but
plateaued quickly, while the training accuracy con-
tinued to get better.

The labels that appeared only few times in the
training set got worse F1-scores than the ones that
appeared more often. The model’s performance
when it comes to these labels could have been im-
proved by doing more data analysis and by trying
different sampling methods.



6 Git Repository

All models and necessary files for this project
are uploaded at the following Git repository:
https://github.com/Teemursu/intro2dl/

tree/master/final_project

References
Abhishek Kumar Mishra. 2020. Fine tuning trans-

former for multilabel text classification.

https://github.com/Teemursu/intro2dl/tree/master/final_project
https://github.com/Teemursu/intro2dl/tree/master/final_project
https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb#scrollTo=jdrKBSs0r0bd
https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb#scrollTo=jdrKBSs0r0bd

